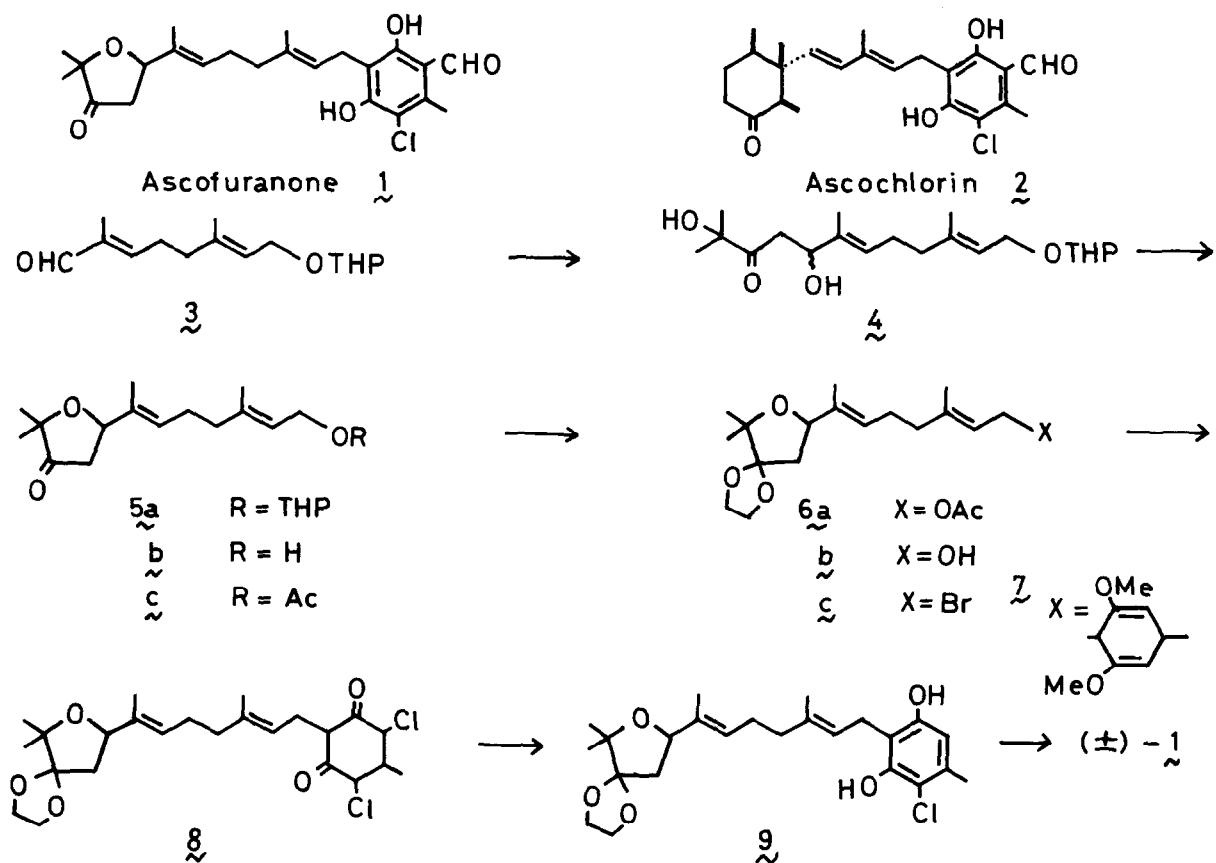


SYNTHESIS OF (±)-ASCOFURANONE, AN ANTIBIOTIC WITH
HYPOLIPIDEMIC AND ANTITUMOR PROTECTIVE PROPERTIES

Kenji Mori* and Takafumi Fujioka¹⁾


Department of Agricultural Chemistry, The University of Tokyo,
Yayoi 1-1-1, Bunkyo-ku, Tokyo 113, Japan

Summary: (±)-Ascofuranone, 5-chloro-2,4-dihydroxy-6-methyl-[(2E,6E)-7-(3,3-dimethyl-4-oxo-2-oxacyclopentyl)3,7-dimethyl-2,6-heptadienyl]benzaldehyde, was synthesized.

Ascofuranone is a hypolipidemic antibiotic isolated from the mycelium of Ascochyta viciae LIBERT by Ando and his co-workers.^{2,3)} Its structure was confirmed by an X-ray analysis as depicted in λ ,⁴⁾ although its absolute configuration still remains unknown. Recently its antitumor protective effect on L-1210 leukemia was discovered when it was administered once seven days before tumor challenge.⁵⁾ After the completion of our synthetic work on ascochlorin λ ,⁶⁾ we turned our attention to ascofuranone λ . Herein we report the first synthesis of (±)- λ .⁷⁾

An aldehyde λ was prepared from geraniol as previously described by us.⁸⁾ A cross-aldol reaction between λ and 3-hydroxy-3-methyl-2-butanone [$\text{LiN}(\text{TMS})_2/\text{THF}$, -78°] gave λ (73.2% yield).^{cf.9)} This was treated with p -TsOH in $\text{CH}(\text{OMe})_3$ containing a small amount of MeOH to give a furanone λ (52.9%). Removal of the THP protective group [$\text{AcOH-THF-H}_2\text{O}$ (3 : 1 : 1), 50°] of λ gave λ (96.1%),¹⁰⁾ which was acetylated ($\text{Ac}_2\text{O/C}_5\text{H}_5\text{N}$, room temp) to give λ (90.0%). Its CO group was protected as an ethylene acetal to give λ (80.4%) by Noyori's method [$\text{TMSOTf/TMSO}(\text{CH}_2)_2\text{OTMS/CH}_2\text{Cl}_2, 0^\circ$].¹¹⁾ Hydrolysis of λ ($\text{K}_2\text{CO}_3/\text{MeOH-H}_2\text{O}$) gave λ (93.1%). This yielded a bromide λ by the successive treatment with (i) n -BuLi/ $\text{Et}_2\text{O-HMPA}$ (ii) p -TsCl/ Et_2O and (iii) LiBr.

The later stages of the present synthesis followed the route previously employed by us in the synthesis of ascochlorin λ and the related microbial metabolites.^{6,12)} Alkylation of 1,5-dimethoxy-3-methyl-1,4-cyclohexadiene with λ (n -BuLi/THF-HMPA, -78°) gave λ (33.2% from λ). Treatment of λ with N-chloro-succinimide yielded λ (63/2%). Aromatization of λ was effected with DBU in THF (reflux, 4 hr) to give λ (50.0%). Formylation of λ [(i) $\text{EtMgBr/Et}_2\text{O}$, (ii) $\text{CH}(\text{OEt})_3$ (iii) heating at 100°] was followed by acid hydrolysis [$\text{AcOH-H}_2\text{O}$ (2 : 1), reflux, 30 min] to give (±)-ascofuranone λ (21.0%) as fine needles, mp 87~91° (Found: C, 65.66; H, 6.94. Calc. for $\text{C}_{23}\text{H}_{29}\text{O}_5\text{Cl}$: C, 65.63; H, 6.94%). Its IR and NMR spectra were identical to those reported for the natural ascofuranone.³⁾

REFERENCES AND FOOTNOTES

- 1) Research Fellow on leave from Otsuka Pharmaceutical Co., Ltd (1981-1983).
- 2) H. Sasaki, T. Okutomi, T. Hosokawa, Y. Nawata and K. Ando, Tetrahedron Letters, 2541 (1972).
- 3) H. Sasaki, T. Hosokawa, M. Sawada and K. Ando, J. Antibiotics, 26, 676 (1973).
- 4) K. Ando, H. Sasaki, T. Hosokawa, Y. Nawata and Y. Iitaka, Tetrahedron Letters, 887 (1975).
- 5) J. Magae, T. Hosokawa, K. Ando, K. Nagai and G. Tamura, J. Antibiotics, 35, 1547 (1982).
- 6) K. Mori and T. Fujioka, Tetrahedron Letters, in press.
- 7) For the synthetic efforts in this area, see: (a) A.E. Guthrie, J.E. Semple and M.M. Joullié, J. Org. Chem., 47, 2369 (1982). (b) K. -M. Chen and M.M. Joullié, Tetrahedron Letters, 43, 4567 (1982).
- 8) K. Mori, M. Ohki and M. Matsui, Tetrahedron, 30, 715 (1974).
- 9) P.J. Jerris, P.M. Wovkulich and A.B. Smith, III, Tetrahedron Letters, 4517 (1979).
- 10) The homogeneity of 5b as the desired (2E,6E)-isomer was proved both by ¹³C-NMR and by HPLC analyses.
- 11) T. Tsunoda, M. Suzuki and R. Noyori, Tetrahedron Letters, 1359 (1980).
- 12) K. Mori and K. Sato, Tetrahedron, 38, 1221 (1982).
- 13) ¹H-NMR spectral data of (±)-1: δ (400MHz, CDCl₃) 1.22 (3H, s), 1.28 (3H, s), 1.63 (3H, s), 1.79 (3H, s), 2.00~2.09 (2H, m), 2.10~2.21 (2H, m), 2.35 (1H, dd, J₁=18, J₂=10Hz), 2.42 (1H, dd, J₁=18, J₂=7Hz), 2.60 (3H, s), 3.39 (2H, d, J=7Hz), 4.52 (1H, dd, J₁=10, J₂=7Hz), 5.21 (1H, t, J=7Hz), 5.51 (1H, t, J=7Hz), 6.46 (1H, s), 10.14 (1H, s), 12.70 (1H, s).

(Received in Japan 4 January 1983)